Infrared Phase-Change Metadevices

Professor C David Wright
Department of Engineering
University of Exeter
(david.wright@exeter.ac.uk)
Acknowledgements

PhD students from Exeter’s CDT in Metamaterials

<table>
<thead>
<tr>
<th>Santiago García-Cuevas Carrillo</th>
<th>Carlota Ruiz De Galarreta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exeter staff

<table>
<thead>
<tr>
<th>Dr Jacopo Bertolloti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Collaborators from Bristol

<table>
<thead>
<tr>
<th>Prof Martin Cryan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Collaborators from Southampton

<table>
<thead>
<tr>
<th>Prof Dan Hewak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Collaborators from Oxford

<table>
<thead>
<tr>
<th>Prof Harish Bhaskaran</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Funding Acknowledgements

University of Exeter EPSRC Centre for Doctoral Training in Metamaterials

EPSRC WAFT Project (led by Harish Bhaskaran at Oxford)

EPSRC ChAMP Project (led by Dan Hewak at Southampton)

Office for Naval Research Global

QinetiQ

Dyson
What are phase-change materials?
Chalcogenide phase-change materials

What are phase-change materials?

Amorphous ↔ Crystalline

- Fast transition time (ns)
- High electro-optical contrast
- Non-volatile

Optical changes on phase-switching

Electrical changes on phase-switching
Chalcogenides – alloys of chalcogens with other elements
Chalcogenide phase-change alloys – e.g. \(\text{Ge}_2\text{Sb}_2\text{Te}_5 \) – phase-change materials
Transition-metal dichalcogenides – e.g. MoS\(_2\) – 2D materials with bandgap
Existing uses of phase-change materials

Re-writable optical discs
- DVD-RW, DVD+RW, DVD-RAM
- Blu-ray RE (100 Gbyte)

Non-volatile electrical memory
- High-end SSD replacement
- Intel-Micron joint venture
What are metadevices?
Phase-change **metadevices**

Combine *phase-change materials* and *optical metasurfaces* to deliver new photonics functionality.

Conventional metasurfaces typically have patterned metal top layer, metal ground plane and dielectric spacer.

Optical response tailored by exploiting *plasmonic resonances*.

Response is fixed by design (shapes, sizes, thicknesses, materials).

Example – **broadband solar absorber**

Phase-change meta-devices

Phase-change meta-devices replace the (passive) dielectric with a phase-change layer - acts as switchable dielectric

Optical response different for phase-change layer in amorphous and crystalline phases

Switch between two phases optically or electrically

Devices with tunable, switchable, re-configurable optical response

- Tuned, re-configurable absorbers (modulators)
- Beam steering with no moving parts
- Tunable multispectral filters
- Re-configurable lenses
- Spatial light modulators
- Moving holograms

See: S G-C Carrillo et al., Optics Express 24, 13563 (2016)
C Ruiz de Galarreta et al., Adv Funct Mater (submitted)
Examples of phase-change IR metadevices
Phase-change **meta-absorbers/modulators**

Example – a *near-infrared* meta-absorber/modulator

Device optimised for optimum modulation depth at 1550 nm by

- varying width and spacing of top metal stripes and
- varying thickness of GST and ITO layers

MD = ratio of device reflectance for GST layer in *crystal/amorphous* phases

See: S G-C Carrillo et al., *Optics Express* 24, 13563 (2016)
Phase-change *meta-absorbers/modulators*

Simulated device reflectance spectrum (Au metal layers)

Absorption (1550 nm) \(\sim\) 99%
MD (1550 nm) \(\sim\) 76%
Plasmon-induced electric and magnetic dipoles

Electric dipole
(and image)

Magnetic dipole

Reflectance (a.u.)

1550 nm

Frequency [Hz]
Phase-change meta-absorbers/modulators

Experimental devices (Al metal layers)

- Experimental reflectance spectra
 - starting phase amorphous
 - crystallised by scanned 405 nm laser
 - good agreement between simulated and actual spectra
Phase-change **meta-absorbers/modulators**

Ex-situ optical switching is relatively easy

In-situ electrical switching more attractive for real-world devices

See poster by Santiago Garcia-Cuevas Carrillo
- Phase-change meta-devices for near-infrared absorbers & modulators
Phase-change *beam-steering meta-devices*

Here we *control the optical phase of the reflected wave* (cf. control of amplitude in absorber devices)

Generalized Snell’s Law

\[
\sin(\alpha_r) = \sin(\alpha_i) + \frac{\Delta \phi \lambda_0}{2\pi d}
\]
Phase-change beam-steering metadevices

Unit cell design

- Design wavelength, $\lambda = 1550\text{nm}$

Super cell design

See: C Ruiz de Galarreta et al., Adv Funct Mater (submitted)
Beam-steering meta-devices: Device Fabrication

1) Clean SiO2/Si Substrate

2) Magnetron sputtering (Aluminum, ITO, GST, ITO)

3) PMMA spin coating

4) E-beam lithography

5) Magnetron sputtering (Aluminum)

6) PMMA lift off
Beam-steering metadevices: Device Fabrication

See: C Ruiz de Galarreta et al., Adv Funct Mater (submitted)
Beam-steering metadevices: \textit{Device characterisation}

Measurements carried out at University of Bristol

$\lambda = 1550 \text{ nm}$
Phase-change **beam-steering metadevices**

Possible applications

- LIDAR (autonomous vehicles, robotics)
- Beam coupling (communications)
- Modulation (cf. AO, LCD modulators)
- Camouflage (deflection incoming beams)

See poster by Carlota Ruiz de Galarreta
- Beam steering and beam shaping phase-change metasurfaces working in the near infrared
Multispectral imaging phase-change metadevices

See poster by Liam Trimby
- Multispectral Imaging using Phase-Change Meta-Filters
Dielectric phase-change metadevices

All devices so far have exploited *plasmonic resonances in metals*

Plasmonic losses can be high

Is there an alternative, low-loss approach?

Yes – *dielectric phase-change metadevices*
Dielectric phase-change metadevices

Modulation of reflection in 1350-1650 nm range.

Efficiencies can be very high (80-90%)

See poster by Arseny Alexeev

- Tunable dielectric metadevices enabled by phase-change materials
Summary

Phase-change materials used successfully for optical & electrical memories

Optical metasurfaces used successfully to deliver flat thin-film optics

By combining phase-change materials and metasurfaces, can deliver a wide range of new and improved optical/photonic functionality

Possible devices include:

• Tunable/reconfigurable absorbers and modulators
• Beam steerers and beam transformers
• Spatial light modulators
• Reconfigurable lenses
• Non-volatile and holographic displays

Application areas include:

• Imaging and sensing
• Autonomous vehicles and robotics
• Communications
• Security and defence
• Bio-medical instrumentation

Can work over a wide range of wavelengths – visible, NIR, MIR